Rabu, 23 Mei 2012

proses terbentuknya panas bumi


Secara garis besar bumi ini terdiri dari tiga lapisan utama yaitu kulit bumi (crust), selubung bumi (mantel) dan inti bumi (core). Kulit bumi adalah bagian terluar dari bumi. Ketebalan dari kulit bumi bervariasi, tetapi umumnya kulit bumi di bawah suatu daratan (continent) lebih tebal dari yang terdapat di bawah suatu lautan. Di bawah suatu daratan ketebalan kulit bumi umumnya sekitar 35 kilometer sedangkan di bawah lautan hanya sekitar 5 kilometer. Batuan yang terdapat pada lapisan ini adalah batuan keras yang mempunyai density sekitar 2.7-3 gr/cm3.
Di bawah kulit bumi terdapat suatu lapisan tebal yang disebut selubung bumi (mantel) yang diperkirakan mempunyai ketebalan sekitar 2900 kilometer. Bagian teratas dari selubung bumi juga merupakan batuan keras.
Bagian terdalam dari bumi adalah inti bumi (core) yang mempunyai ketebalan sekitar 3450 kilometer. Lapisan ini mempunyai temperatur dan tekanan yang sangat tinggi sehingga lapisan ini berupa lelehan yang sangat panas yang diperkirakan mempunyai density sekitar 10.2-11.5 gr/cm3. Diperkirakan temperatur pada pusat bumi dapat mencapai sekitar 6000 0F.
Kulit bumi dan bagian teratas dari selubung bumi kemudian dinamakan litosfir (80-200 km). Bagian selubung bumi yang terletak tepat di bawah litosfir merupakan batuan lunak tapi pekat dan jauh lebih panas. Bagian dari selubung bumi ini kemudian dinamakan astenosfer (200-300 km). Di bawah lapisan ini, yaitu bagian bawah dari selubung bumi terdiri dari material-material cair, pekat dan panas, dengan density sekitar 3.3-5.7 gr/cm3.
Hasil penyelidikan menunjukkan bahwa litosfer sebenarnya bukan merupakan permukaan yang utuh, tetapi terdiri dari sejumlah lempeng-lempeng tipis dan kaku.
Lempeng-lempeng tersebut merupakan bentangan batuan setebal 64–145 km yang mengapung di atas astenosfer. Lempeng-lempeng ini bergerak secara perlahan-lahan dan menerus. Di beberapa tempat lempeng-lempeng bergerak memisah sementara di beberapa tempat lainnya lempeng-lempeng saling mendorong dan salah satu diantaranya akan menujam di bawah lempeng lainnya (lihat Gambar 2.3). Karena panas di dalam astenosfere dan panas akibat gesekan, ujung dari lempengan tersebut hancur meleleh dan mempunyai temperatur tinggi (proses magmatisasi).
Adanya material panas pada kedalaman beberapa ribu kilometer di bawah permukaan bumi menyebabkan terjadinya aliran panas dari sumber panas hingga ke pemukaan. Hal ini menyebabkan tejadinya perubahan temperatur dari bawah hingga ke permukaan bumi, dengan gradien temperatur rata-rata sebesar 30 0C/km. Di perbatasan antara dua lempeng (daerah penujaman) harga laju aliran panas umumnya lebih besar dari harga rata-rata tersebut. Hal ini menyebabkan gradien temperatur di daerah tersebut menjadi lebih besar dari gradien temperatur rata-rata, sehingga dapat mencapai 70-80 0C/km.
Pada dasarnya sistem panasbumi terbentuk sebagai hasil perpindahan panas dari suatu sumber panas ke sekelilingnya yang terjadi secara konduksi dan secara konveksi. Perpindahan panas secara konduksi terjadi melalui batuan, sedangkan perpindahan panas secara konveksi terjadi karena adanya kontak antara air dengan suatu sumber panas. Perpindahan panas secara konveksi pada dasarnya terjadi karena gaya apung (bouyancy). Air karena gaya gravitasi selalu mempunyai kecenderungan untuk bergerak kebawah, akan tetapi apabila air tersebut kontak dengan suatu sumber panas maka akan terjadi perpindahan panas sehingga temperatur air menjadi lebih tinggi dan air menjadi lebih ringan. Keadaan ini menyebabkan air yang lebih panas bergerak ke atas dan air yang lebih dingin bergerak turun ke bawah, sehingga terjadi sirkulasi air atau arus konveksi.
Terjadinya sumber energi panasbumi di Indonesia serta karakteristiknya dijelaskan oleh Budihardi (1998) sebagai berikut. Ada tiga lempengan yang berinteraksi di Indonesia, yaitu lempeng Pasifik, lempeng India-Australia dan lempeng Eurasia. Tumbukan yang terjadi antara ketiga lempeng tektonik tersebut telah memberikan peranan yang sangat penting bagi terbentuknya sumber energi panasbumi. Tumbukan antara lempeng India-Australia di sebelah selatan dan lempeng Eurasia di sebelah utara mengasilkan zona penunjaman (subduksi) di kedalaman 160-210 km di bawah Pulau Jawa-Nusatenggara dan di kedalaman sekitar 100 km (Rocks et. al, 1982) di bawah Pulau Sumatera. Hal ini menyebabkan proses magmatisasi di bawah Pulau Sumatera lebih dangkal dibandingkan dengan di bawah Pulau Jawa atau Nusatenggara. Karena perbedaan kedalaman jenis magma yang dihasilkannya berbeda. Pada kedalaman yang lebih besar jenis magma yang dihasilkan akan lebih bersifat basa dan lebih cair dengan kandungan gas magmatik yang lebih tinggi sehingga menghasilkan erupsi gunung api yang lebih kuat yang pada akhirnya akan menghasilkan endapan vulkanik yang lebih tebal dan terhampar luas. Oleh karena itu, reservoir panasbumi di Pulau Jawa umumnya lebih dalam dan menempati batuan volkanik, sedangkan reservoir panasbumi di Sumatera terdapat di dalam batuan sedimen dan ditemukan pada kedalaman yang lebih dangkal.

(Dari berbagai Sumber....)

Selasa, 08 Mei 2012

BATUAN BEKU

Batuan Beku

Terminologi

Batuan beku adalah batuan yang terbentuk sebagai hasil pembekuan daripada magma. Magma adalah bahan cair pijar di dalam bumi, berasal dari bagian atas selubung bumi atau bagian bawah kerak bumi, bersuhu tinggi (900 – 1300 oC) serta mempunyai kekentalan tinggi, bersifat mudah bergerak dan cenderung menuju ke permukaan bumi.



Letak Pembekuan

Batuan beku dalam adalah batuan beku yang terbentuk di dalam bumi; sering disebut batuan beku intrusi. Batuan beku luar adalah batuan beku yang terbentuk di permukaan bumi; sering disebut batuan beku ekstrusi. Batuan beku hipabisal adalah batuan beku intrusi dekat permukaan, sering disebut batuan beku gang atau batuan beku korok, atau sub volcanic intrusion.


Warna Batuan Beku

Warna segar batuan beku bervariasi dari hitam, abu-abu dan putih cerah. Warna ini sangat dipengaruhi oleh komposisi mineral penyusun batuan beku itu sendiri. Apabila terjadi percampuran mineral berwarna gelap dengan mineral berwarna terang maka warna batuan beku dapat hitam berbintik-bintik putih, abu-abu berbercak putih, atau putih berbercak hitam, tergantung warna mineral mana yang dominan dan mana yang kurang dominan. Pada batuan beku tertentu yang banyak mengandung mineral berwarna merah daging maka warnanya menjadi putih-merah daging.

Tekstur Batuan Beku

Tekstur adalah hubungan antar mineral penyusun batuan. Dengan demikian tekstur mencakup tingkat visualisasi ukuran butir atau granularitas, tingkat kristalisasi mineral atau kristalinitas, tingkat keseragaman butir kristal, ukuran butir kristal, dan bentuk kristal.

Tingkat Visualisasi Granularitas

Berdasarkan pengamatan dengan mata telanjang atau memakai loupe, maka tekstur batuan beku dibagi dua, yaitu tekstur afanitik dan tekstur faneritik.

a. Afanitik adalah kenampakan batuan beku berbutir sangat halus sehingga mineral/kristal penyusunnya tidak dapat diamati secara mata telanjang atau dengan loupe.

b. Fanerik (faneritik, firik = phyric) adalah apabila di dalam batuan tersebut dapat terlihat mineral penyusunnya, meliputi bentuk kristal, ukuran butir dan hubungan antar butir (kristal satu dengan kristal lainnya atau kristal dengan kaca). Singkatnya, batuan beku mempunyai tekstur fanerik apabila mineral penyusunnya, baik berupa kristal maupun gelas/kaca, dapat diamati.

Apabila batuan beku mempunyai tekstur afanitik maka pemerian tekstur lebih rinci tidak dapat diketahui, sehingga harus dihentikan. Sebaliknya apabila batuan beku tersebut bertekstur fanerik maka pemerian lebih lanjut dapat diteruskan.

Tingkat kristalisasi atau kristalinitas

a. Holokristalin, apabila batuan tersusun semuanya oleh kristal.

b. Holohialin, apabila batuan tersusun seluruhnya oleh gelas atau kaca.

c. Hipokristalin, apabila batuan tersusun sebagian oleh kaca dan sebagian berupa kristal.

Tingkat Keseragaman Butir

a. Equigranular, apabila kristal penyusunnya berukuran butir relatif seragam. Tekstur sakaroidal adalah tekstur dimana ukuran butirnya seragam seperti gula pasir atau gula putih.

b. Inequigranular, jika ukuran butir kristal penyusunnya tidak sama.

Ukuran butir kristal : < 1 mm ——– berbutir halus 1 – 5 mm ——– berbutir sedang 5 – 30 mm ——– berbutir kasar > 30 mm ——– berbutir sangat kasar

Bentuk Kristal

a. Euhedral, jika kristal berbentuk sempurna/lengkap, dibatasi oleh bidang kristal yang ideal (tegas, jelas dan teratur). Batuan beku yang hampir semuanya tersusun oleh mineral dengan bentuk kristal euhedral, disebut bertekstur idiomorfik granular atau panidiomorfik granular.

b. Subhedral, jika kristalnya dibatasi oleh bidang-bidang kristal yang tidak begitu jelas, sebagian teratur dan sebagian tidak. Tekstur batuan beku dengan mineral penyusun umumnya berbentuk kristal subhedral disebut hipidiomorfik granular atau subidiomorfik granular.

c. Anhedral, kalau kristalnya dibatasi oleh bidang-bidang kristal yang tidak teratur. Tekstur batuan yang tersusun oleh mineral dengan bentuk kristal anhedral disebut alotriomorfik granular atau xenomorfik granular.

Secara tiga dimensi, bentuk kristal disebut :

a. Kubus atau equidimensional, apabila ketiga dimensinya sama panjang.

b. Tabular atau papan, apabila dua dimensi kristalnya lebih panjang dari satu dimensi yang lain.

c. Prismatik atau balok, jika dua dimensi kristalnya lebih pendek dari satu dimensi yang lain. Bentuk ini ada yang prismatik pendek (gemuk) dan prismatik panjang (kurus, kadang-kadang seperti jarum).

Di dalam batuan beku bertekstur holokristalin inequigranular dan hipokristalin terdapat kristal berukuran butir besar, disebut fenokris, yang tertanam di dalam masadasar (groundmass). Kenampakan demikian disebut tekstur porfir atau porfiri atau firik. Tekstur holokristalin porfiritik adalah apabila di dalam batuan beku itu terdapat kristal besar (fenokris) yang tertanam di dalam masadasar kristal yang lebih halus. Tekstur hipokristalin porfiritik diperuntukkan bagi batuan beku yang mempunyai fenokris tertanam di dalam masadasar gelas. Karena tekstur holokristalin porfiritik dan hipokristalin porfiritik secara mata telanjang dapat diidentifikasi maka kenampakan tersebut dapat disebut bertekstur faneroporfiritik. Sebaliknya, apabila fenokrisnya tertanam di dalam masadasar afanitik maka batuannya bertekstur porfiroafanitik. Tekstur vitrofirik adalah tekstur dimana mineral penyusunnya secara dominan adalah gelas, sedang kristalnya hanya sedikit (< 10 %).


Tekstur diabasik adalah tekstur dimana kristal plagioklas berbentuk prismatik panjang (lath-like), berarah relatif sejajar dan di antaranya terdapat butir-butir lebih kecil daripada kristal olivin dan piroksen. Tekstur gabroik adalah tekstur holokristalin, berbutir sedang – kasar (Æ : 1 – 30 mm), tersusun secara dominan oleh mineral mafik (olivin, piroksen, amfibol) dan plagioklas basa. Tekstur granitik adalah tekstur holokristalin berbutir sedang-kasar tersusun oleh plagioklas asam, alkali felspar, dan kuarsa. Tekstur pegmatitik adalah tekstur holokristalin kasar – sangat kasar (Æ ³ 5 mm), tersusun oleh alkali felspar dan kuarsa. Tekstur dioritik sebanding dengan tekstur gabroik dan granitik tetapi biasanya untuk batuan beku menengah. 

STRUKTUR BATUAN BEKU 

1. Masif atau pejal, umumnya terjadi pada batuan beku dalam. Pada batuan beku luar yang cukup tebal, bagian tengahnya juga dapat berstruktur masif.
2. Berlapis, terjadi sebagai akibat pemilahan kristal (segregasi) yang berbeda pada saat pembekuan.
3. Vesikuler, yaitu struktur lubang bekas keluarnya gas pada saat pendinginan. Struktur ini sangat khas terbentuk pada batuan beku luar. Namun pada batuan beku intrusi dekat permukaan struktur vesikuler ini kadang-kadang juga dijumpai. Bentuk lubang sangat beragam, ada yang berupa lingkaran atau membulat, elip, dan meruncing atau menyudut, demikian pula ukuran lubang tersebut. Vesikuler berbentuk melingkar umumnya terjadi pada batuan beku luar yang berasal dari lava relatif encer dan tidak mengalir cepat. Vesikuler bentuk elip menunjukkan lava encer dan mengalir. Sumbu terpanjang elip sejajar arah sumber dan aliran. Vesikuler meruncing umumnya terdapat pada lava yang kental.
4. Struktur skoria (scoriaceous structure) adalah struktur vesikuler berbentuk membulat atau elip, rapat sekali sehingga berbentuk seperti rumah lebah.
5. Struktur batuapung (pumiceous structure) adalah struktur vesikuler dimana di dalam lubang terdapat serat-serat kaca.
6. Struktur amigdaloid (amygdaloidal structure) adalah struktur vesikuler yang telah terisi oleh mineral-mineral asing atau sekunder.
7. Struktur aliran (flow structure), adalah struktur dimana kristal berbentuk prismatik panjang memperlihatkan penjajaran dan aliran.
Struktur batuan beku tersebut di atas dapat diamati dari contoh setangan (hand specimen) di laboratorium. Sedangkan struktur batuan beku dalam lingkup lebih besar, yang dapat menunjukkan hubungan dengan batuan di sekitarnya, seperti dike (retas), sill, volcanic neck, kubah lava, aliran lava dan lain-lain hanya dapat diamati di lapangan.

            KOMPOSISI MINERAL
 
Berdasarkan jumlah kehadiran dan asal-usulnya, maka di dalam batuan beku terdapat mineral utama pembentuk batuan (essential minerals), mineral tambahan (accessory minerals) dan mineral sekunder (secondary minerals).
1. Essential minerals, adalah mineral yang terbentuk langsung dari pembekuan magma, dalam jumlah melimpah sehingga kehadirannya sangat menentukan nama batuan beku.
2. Accessory minerals , adalah mineral yang juga terbentuk pada saat pembekuan magma tetapi jumlahnya sangat sedikit sehingga kehadirannya tidak mempengaruhi penamaan batuan. Mineral ini misalnya kromit, magnetit, ilmenit, rutil dan zirkon. Mineral esensiil dan mineral tambahan di dalam batuan beku tersebut sering disebut sebagai mineral primer, karena terbentuk langsung sebagai hasil pembekuan daripada magma.
3. Secondary minerals adalah mineral ubahan dari mineral primer sebagai akibat pelapukan, reaksi hidrotermal, atau hasil metamorfisme. Dengan demikian mineral sekunder ini tidak ada hubungannya dengan pembekuan magma. Mieral sekunder akan dipertimbangkan mempengaruhi nama batuan ubahan saja, yang akan diuraikan pada acara analisis batuan ubahan. Contoh mineral sekunder adalah kalsit, klorit, pirit, limonit dan mineral lempung.
4. Gelas atau kaca, adalah mineral primer yang tidak membentuk kristal atau amorf. Mineral ini sebagai hasil pembekuan magma yang sangat cepat dan hanya terjadi pada batuan beku luar atau batuan gunungapi, sehingga sering disebut kaca gunungapi (volcanic glass).
5. Mineral felsik adalah adalah mineral primer atau mineral utama pembentuk batuan beku, berwarna cerah atau terang, tersusun oleh unsur-unsur Al, Ca, K, dan Na. Mineral felsik dibagi menjadi tiga, yaitu felspar, felspatoid (foid) dan kuarsa. Di dalam batuan, apabila mineral foid ada maka kuarsa tidak muncul dan sebaliknya. Selanjutnya, felspar dibagi lagi menjadi alkali felspar dan plagioklas.
6. Mineral mafik adalah mineral primer berwarna gelap, tersusun oleh unsur-unsur Mg dan Fe. Mineral mafik terdiri dari olivin, piroksen, amfibol (umumnya jenis hornblende), biotit dan muskovit.
Pemerian dan pengenalan mineral pembentuk batuan beku tersebut secara megaskopik sudah harus dikuasai oleh para praktikan, seperti diberikan pada kuliah dan praktikum kristalografi-mineralogi serta dipraktekkan lagi pada acara I pengenalan mineral pembentuk batuan, praktikum petrologi ini. Untuk mengetahui genesa masing-masing mineral pembentuk batuan tersebut di atas, praktikan dianjurkan untuk mempelajari Reaksi Seri Bowen yang terdapat di dalam buku-buku literatur Petrologi (misal Middlemost, 1985, Magmas and magmatic rocks, Longman, Inc., London, 266 p).

            PENAMAAN / KLASIFIKASI 
 
Berdasarkan letak pembekuannya maka batuan beku dapat dibagi menjadi batuan beku intrusi dan batuan beku ekstrusi. Batuan beku intrusi selanjutnya dapat dibagi menjadi batuan beku intrusi dalam dan batuan beku intrusi dekat permukaan. Berdasarkan komposisi mineral pembentuknya maka batuan beku dapat dibagi menjadi empat kelompok, yaitu batuan beku ultramafik, batuan beku mafik, batuan beku menengah dan batuan beku felsik. Istilah mafik ini sering diganti dengan basa, dan istilah felsik diganti dengan asam, sekalipun tidak tepat.
Termasuk batuan beku dalam ultramafik adalah dunit, piroksenit, anortosit, peridotit dan norit. Dunit tersusun seluruhnya oleh mineral olivin, sedang piroksenit oleh piroksen dan anortosit oleh plagioklas basa. Peridotit terdiri dari mineral olivin dan piroksen; norit secara dominan terdiri dari piroksen dan plagioklas basa. Batuan beku luar ultramafik umumnya bertekstur gelas atau vitrofirik dan disebut pikrit.
Batuan beku dalam mafik disebut gabro, terdiri dari olivin, piroksen dan plagioklas basa. Sebagai batuan beku luar kelompok ini adalah basal. Batuan beku dalam menengah disebut diorit, tersusun oleh piroksen, amfibol dan plagioklas menengah, sedang batuan beku luarnya dinamakan andesit. Antara andesit dan basal ada nama batuan transisi yang disebut andesit basal (basaltic andesit). Batuan beku dalam agak asam dinamakan diorit kuarsa atau granodiorit, sedangkan batuan beku luarnya disebut dasit. Mineral penyusunnya hampir mirip dengan diorit atau andesit, tetapi ditambah kuarsa dan alkali felspar, sementara palgioklasnya secara berangsur berubah ke asam. Apabila alkali felspar dan kuarsanya semakin bertambah dan palgioklasnya semakin asam maka sebagai batuan beku dalam asam dinamakan granit, sedang batuan beku luarnya adalah riolit. Di dalam batuan beku asam ini mineral mafik yang mungkin hadir adalah biotit, muskovit dan kadang-kadang amfibol. Batuan beku dalam sangat asam, dimana alkali felspar lebih banyak daripada plagioklas adalah sienit, sedang pegmatit hanyalah tersusun oleh alkali felspar dan kuarsa. Batuan beku yang tersusun oleh gelas saja disebut obsidian, dan apabila berstruktur perlapisan disebut perlit.
Nama-nama batuan beku tersebut di atas sering ditambah dengan aspek tekstur, struktur dan atau komposisi mineral yang sangat menonjol. Sebagai contoh, andesit porfir, basal vesikuler dan andesit piroksen. Penambahan nama komposisi mineral tersebut umumnya diberikan apabila persentase kehadirannya paling sedikit 10 %. Perkiraan persentase kehadiran mineral pembentuk batuan (Tabel 3.4) dan tabel klasifikasi batuan beku (Tabel 3.5) dapat membantu memberikan nama terhadap batuan beku.

Tabel 3.4 Diagram persentase untuk perkiraan komposisi berdasarkan volume


 Tabel 3.5 Klasifikasi batuan beku (O’Dunn & Sill, 1986)



            PETROGENESA BATUAN BEKU
 
Petrogenesa adalah bagian dari petrologi yang menjelaskan seluruh aspek terbentuknya batuan mulai dari asal-usul atau sumber, proses primer terbentuknya batuan hingga perubahan-perubahan (proses sekunder) pada batuan tersebut. Untuk batuan beku, sebagai sumbernya adalah magma. Proses primer menjelaskan rangkaian atau urutan kejadian dari pembentukan berbagai jenis magma sampai dengan terbentuknya berbagai macam batuan beku, termasuk lokasi pembekuannya. Setelah batuan beku itu terbentuk, batuan itu kemudian terkena proses sekunder, antara lain berupa oksidasi, pelapukan, ubahan hidrotermal, penggantian mineral (replacement), dan malihan, sehingga sifat fisik maupun kimiawinya dapat berubah total dari batuan semula atau primernya.
Berhubung proses petrogenetik tersebut sebagian besar berlangsung lama (dalam ukuran waktu geologi), dan umumnya terjadi di bawah permukaan bumi, sehingga tidak dapat diamati langsung, maka analisis atau penjelasannya bersifat interpretatif. Pembuktian mungkin dapat ditunjukkan berdasar hasil-hasil eksperimen di laboratorium, sekalipun hanya pada batas-batas tertentu. Analisis interpretatif tersebut tetap didasarkan pada data obyektif atau deskriptif hasil pemerian yang meliputi warna, tekstur, struktur, komposisi mineral dan kenampakan khusus lainnya. Dengan demikian studi petrogenesa pada prinsipnya untuk mencari jawaban atau penjelasan terhadap pertanyaan “Mengapa” (Why) dan “Bagaimana” (How) terhadap data pemerian batuan.

Senin, 07 Mei 2012

GEOTHERMAL




TUGAS
SUMBERDAY ALAM
PEMANFAATAN GEOTHERMAL ATAU PANAS BUMI


Diusulkan Oleh :
Nama : Sigit Bayhu Iryanthony
Nim : 3201411028
Prodi : Pendididkan Geografi


UNIVERSITAS NEGERI SEMARANG
SEMARANG
2010



GEOTTHERMAL

Pengantar



 Pembentukan Energi Panas Bumi
 Panas Bumi adalah sumber energi panas yang terkandung di dalam air panas, uap air, dan batuan bersama mineral ikutan dan gas lainnya yang secara genetik semuanya tidak dapat dipisahkan dalam suatu sistem Panas Bumi dan untuk pemanfataannya diperlukan proses penambangan . Panas bumi adalah sumber daya alam yang dapat diperbarui, berpotensi besar serta sebagai salah satu sumber energi pilihan dalam keanekaragaman energi. Panas Bumi merupakan sumber energi panas yang terbentuk secara alami di bawah permukaan bumi. Sumber energi tersebut berasal dari pemanasan batuan dan air bersama unsur-unsur lain yang dikandung Panas Bumi yang tersimpan di dalam kerak bumi.
Energi primer ini di Indonesia tersedia dalam jumlah sedikit (terbatas) dibandingkan dengan cadangan energi primer dunia. Semakin ke bawah, temperatur bawah permukaan bumi semakin meningkat atau semakin panas. Panas yang berasal dari dalam bumi dihasilkan dari reaksi peluruhan unsur-unsur radioaktif seperti uranium dan potassium. Reaksi nuklir yang sama saat ini masih terjadi di matahari dan bintang-bintang yang tersebar di jagad raya. Reaksi ini menghasilkan panas hingga jutaan derajat celcius. Permukaan bumi pada awal terbentuknya juga memiliki panas yang dahsyat. Namun setelah melewati masa milyaran tahun, temperatur bumi terus menurun dan saat ini sisa-sisa reaksi nuklir tersebut hanya terdapat dibagian inti bumi saja. Pada kedalaman 10.000 meter atau 33.000 feet, energi panas yang dihasilkan bisa mencapai 50.000 kali dari jumlah energi seluruh cadangan minyak bumi dan gas alam yang masih
manifestasi thermal yang lain. Uap hasil penguapan air tanah yang terdapat di dalam tanah akan tetap tanah jika tidak ada saluran yang menghubungkan daerah tempat keberadaan uap dengan permukaan. Uap yang terkurung akan memiliki nilai tekanan yang tinggi dan apabila pada daerah tersebut kita bor sehingga ada saluran penghubung ke permukaan, maka uap tersebut akan mengalir keluar. Uap yang mengalir dengan cepat dan mempunyai entalpi inilah yang kita mamfaatkan dan kita salurkan untuk memutar turbin sehingga dihasilkanlah energi listrik (tentunya ada proses-proses lain sebelum uap memutar turbin).
Dipermukaan bumi sering terdapat sumber-sumber air panas, bahkan sumber uap panas. Panas itu datangnya dari batu-batu yang meleleh atau magma yang menerima panas dari inti bumi. Magma yang terletak di dalam lapisan mantel memanasi suatu lapisan batu padat. Di atas lapisan batu padat terletak suatu lapisan batu berpori yaitu batu yang mempunyai lubang-lubang kecil. Bila lapisan batu berpori ini berisi air yang berasal dari air tanah atau air resapan hujan atau resapan air danau maka air itu turut dipanaskan oleh lapisan batu padat yang panas. Bila panasnya besar maka terbentuk air panas bahkan dapat terbentuk uap dalam lapisan batu berpori. Bila di atas lapisan batu berpori terdapat satu lapisan batu padat maka lapisan batu berpori berfungsi sebagai boiler. Uap dan juga air panas bertekanan akan berusaha keluar. Dalam hal ini ke atas yaitu permukaan bumi. Gejala panas bumi pada umumnya tampak pada permukaan bumi berupa mata air panas, geyser, fumarola dan sulfatora.
Jenis-jenis Energi Panas Bumi
Energi panasbumi merupakan sumber energi lokal yang tidak dapat di ekspor dan sangat ideal untuk mengurangi peran bahan bakar fosil guna meningkatkan nilai tambah nasional dan merupakan sumber energi yang ideal untuk pengembangan daerah setempat. Selain itu, energi panas bumi adalah energi terbarukan yang tidak tergantung pada iklim dan cuaca, sehingga keandalan terhadap sumber energinya tinggi. Dari segi pengembangan sumber energi ini juga mempunyai fleksibilatas yang tinggi karena dalam memenuhi kebutuhan beban dapat dilaksanakan secara bertahap sesuai dengan kebutuhan.Energi panas bumi yang ada di Indonesia pada saat ini dapat dikelompokkan menjadi tiga yaitu uap alam, air panas, dan batuan kering panas. Sejauh ini ketiga jenis panas bumi itu keberadaannya masih belum dimanfaatkan secara maksimal di Indonesia. Pemanfaatan energi panas bumi memang tidak mudah. Energi panas bumi yang umumnya berada di kedalaman 1.000-2.000 meter di bawah permukaan tanah sulit ditebak keberadaan dan "karakternya". Untuk mengeksplorasi ke tiga jenis energi panas bumi diperlukan sumber daya yang tidak sedikit.
Energi Uap Basah

Pemanfaatan energi panas bumi yang ideal adalah bila panas bumi yang keluar dari perut bumi berupa uap kering, sehingga dapat digunakan langsung untuk menggerakkan turbin generator listrik. Namun uap kering yang demikian ini jarang ditemukan termasuk di Indonesia dan pada umumnya uap yang keluar berupa uap basah yang mengandung sejumlah air yang harus dipisahkan terlebih dulu sebelum digunakan untuk menggerakkan turbin. Jenis sumber energi panas bumi dalam bentuk uap basah agar dapat dimanfaatkan maka terlebih dahulu harus dilakukan pemisahan terhadap kandungan airnya sebelum digunakan untuk menggerakan turbin.  Uap basah yang keluar dari perut bumi pada mulanya berupa air panas bertekanan tinggi yang pada saat menjelang permukaan bumi terpisah menjadi kira-kira 20 % uap dan 80 % air. Atas dasar ini maka untuk dapat memanfaatkan jenis uap basah ini diperlukan separator untuk memisahkan antara uap dan air. Uap yang telah dipisahkan dari air diteruskan ke turbin untuk menggerakkan generator listrik, sedangkan airnya disuntikkan kembali ke dalam bumi untuk menjaga keseimbangan air dalam tanah.
Energi Panas Bumi Air panas
Air panas yang keluar dari perut bumi pada umumnya berupa air asin panas yang disebut "brine" dan mengandung banyak mineral. Karena banyaknya kandungan mineral ini, maka air panas tidak dapat digunakan langsung sebab dapat menimbulkan penyumbatan pada pipa-pipa sistim pembangkit tenaga listrik. Untuk dapat memanfaatkan energi panas bumi jenis ini, digunakan sistem biner (dua buah sistem utama) yaitu wadah air panas sebagai sistem primemya dan sistem sekundernya berupa alat penukar panas (heat exchanger) yang akan menghasilkan uap untuk menggerakkan turbin. Energi panas bumi “uap panas” bersifat korosif, sehingga biaya awal pemanfaatannya lebih besar dibandingkan dengan energi panas bumi jenis lainnya.
Energi panas bumi Batuan Panas

Energi panas bumi jenis ketiga berupa batuan panas yang ada dalam perut bumi terjadi akibat berkontak dengan sumber panas bumi (magma). Energi panas bumi ini harus diambil sendiri dengan cara menyuntikkan air ke dalam batuan panas dan dibiarkan menjadi uap panas, kemudian diusahakan untuk dapat diambil kembali sebagai uap panas untuk menggerakkan turbin. Sumber batuan panas pada umumnya terletak jauh di dalam perut bumi, sehingga untuk memanfaatkannya perlu teknik pengeboran khusus yang memerlukan biaya cukup tinggi.
Energi yang berada pada Hot Dry Rock ( HDR ) ini disebut juga sebagai energi petrothermal, yang merupakan sumber terbesar dari energi panas bumi. HDR terletak pada kedalaman sedang dan bersifat impermeabel. Untuk menggunakan energi yang dimiliki HDR, perlu menginjeksikan air pada HDR dan mengembalikannya kembali ke permukaan. Hal ini membutuhkan mekanisme transportasi untuk dapat membuat batuan impermeabel menjadi struktur permeabel dengan luas permukaan perpindahan panas yang besar. Permukaan yang luas ini diperlukan karena sifat batu yang memiliki konduktivitas termal yang kecil. Proses perubahan batuan permeabel dapat dilakukan memecahkan batuan tersebut dengan menggunakan air bertekanan tinggi ataupun ledakan nuklir .Proses eksplorasi yang dilakukan terhadap jenis ini lebih aman dibandingkan dengan jenis hydrothermal yang kemungkinan besar memiliki fluida, baik berupa uap maupun air panas. Hal ini disebabkan jenis energi panas bumi ini memiliki tingkat korosi, erosi serta zat-zat beracun yang lebih rendah dibandingkan dengan jenis hydrothermal.
Sistem Pemanfaatan Panas Bumi

Sebagian besar pembangkit listrik menggunakan uap. Uap dipakai untuk memutar turbin yang kemudian mengaktifkan generator untuk menghasilkan listrik. Banyak pembangkit listrik masih menggunakan bahan bakar fosil untuk mendidihkan air guna menghasilkan uap. Pembangkit Listrik Tenaga Panas bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya saja pada PLTU, uap dibuat di permukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari reservoir panas bumi. Pembangkit yang digunakan untuk merubah panas bumi menjadi tenaga listrik secara umum mempunyai komponen yang sama dengan power plant lain yang bukan berbasis panas bumi, yaitu terdiri dari generator, turbin sebagai penggerak generator, heat exchanger, chiller, pompa, dan sebagainya. Ada tiga macam teknologi pembangkit listrik tenaga panas bumi yaitu dry steam, flash steam, dan binary cycle. Ketiga system yang diterapkan untuk mengeksplorasi sumber energi panas bumi pada dasarnya bersifat relatif yang penerapannya dapat disesuaikan dengan kondisi di lapangan

Penggunaan energi panas bumi sebagai pembangkit tenaga listrik sudah mulai dilirik oleh pemerintah. Pembangkit Listrik Tenaga Panasbumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap dibuat di permukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari reservoir panas bumi. Apabila fluida di kepala sumur berupa fasa uap, maka uap tersebut dapat dialirkan langsung ke turbin, dan kemudian turbin akan mengubah energi panas bumi menjadi energi gerak yang akan memutar generator sehingga dihasilkan energi listrik.Apabila fluida panas-bumi keluar dari kepala sumur sebagai campuran fluida dua fasa (fasa uap dan fasa cair) maka terlebih dahulu dilakukan proses pemisahan pada fluida. Hal ini dimungkinkan dengan melewatkan fluida ke dalam separator, sehingga fasa uap akan terpisahkan dari fasa cairnya. Fraksi uap yang dihasilkan dari separator inilah yang kemudian dialirkan ke turbin.
Pemanfaatan Energi Panas Bumi

Selain untuk tenaga listrik, panas bumi dapat langsung dimanfaatkan untuk kegiatan usaha pemanfaatan energi dan/atau fluidanya, misalnya dimanfaatkan dalam dunia agroindustri. Sifat panas bumi sebagai energi terbarukan menjamin kehandalan operasional pembangkit karena fluida panas bumi sebagai sumber tenaga yang digunakan sebagai penggeraknya akan selalu tersedia dan tidak akan mengalami penurunan jumlah. Pada sektor lingkungan, berdirinya pembangkit panas bumi tidak akan mempengaruhi persediaan air tanah di daerah tersebut karena sisa buangan air disuntikkan ke bumi dengan kedalaman yang jauh dari lapisan aliran air tanah. Limbah yang dihasilkan juga hanya berupa air sehingga tidak mengotori udara dan merusak atmosfer. Kebersihan lingkungan sekitar pembangkit pun tetap terjaga karena pengoperasiannya tidak memerlukan bahan bakar, tidak seperti pembangkit listrik tenaga lain yang memiliki gas buangan berbahaya akibat pembakaran.

Di sektor pariwisata, keberadaan panas bumi seperti air panas maupun uap panas menjadi daya tarik tersendiri untuk mendatangkan orang. Tempat pemandian air panas di Cipanas, Ciateur, mapun hutan taman wisata cagar alam Kamojang menjadi tempat tujuan bagi orang untuk berwisata.

Sumber Energi Panas Bumi di Indonesia

Indonesia merupakan salah satu negara dengan cadangan panas bumi terbesar di dunia. Namun pemanfaatannya masih rendah. Baru sepertiga yang dimanfaatkan Saat ini cadangan panas bumi di Indonesia mencapai 27.000 MWe (megawatt of electrical output), sedangkan yang sudah dimanfaatkan hanya sepertiganya yakni 9.000 MWe atau setara dengan listrik 800 MW.Beberapa daerah panasbumi di Indonesia yang telah dieksploitasi untuk dimanfaatkan sebagai pembangkit listrik adalah: Sibayak (Sumatra Utara), Salak, Karaha-Bodas, Kamojang, Wayang Windu, Darajat (Jawa Barat), Dieng (Jawa Tengah) dan Lahendong (Sumatera Utara) dengan total kapasitas sebesar 822 MW. Sementara daerah potensial yang sedang dieksplorasi antara lain: Ulubelu (Lampung), Bedugul (Bali), Mataloko (Nusa Tenggara Barat), Kotamubago (Sulawesi Utara) dan lainnya. Potensi energi panas bumi Indonesia terbesar di dunia, sekitar 40 persen cadangan dunia. Potensi panas bumi Indonesia sekitar 20.000 MW dengan temperatur tinggi, dengan rincian sekitar 5.500 MW di Jawa-Bali, sekitar 9.500 MW di Sumatera, dan 5.000 MW tersebar di Pulau Sulawesi, Nusa Tenggara Barat, dan Nusa Tenggara Timur. Sementara potensi dunia diperkirakan 50.000 MW, dan yang sudah dimanfaatkan sekitar 10.000 MW atau 20 persen dari potensi. Cadangan energi panas bumi di Indonesia diperkirakan mencapai 27 GWe atau setara dengan 40 persen sumberdaya panasbumi dunia, hanya saja belum dimanfaatkan secara optimal. Sekitar 80% lokasi panas bumi di Indonesia berasosasi dengan sistem vulkanik aktif seperti Sumatra (81 lokasi), Jawa (71 lokasi), Bali dan Nusa Tenggara (27 lokasi), Maluku (15 lokasi), dan terutama Sulawesi Utara (7 lokasi). Sedangkan yang berada di lingkungan non vulkanik aktif yaitu di Sulawesi (43 lokasi), Bangka Belitung (3 lokasi), Kalimantan (3 lokasi), dan Papua (2 lokasi). Dari 252 lokasi panas bumi yang ada, hanya 31% yang telah disurvei secara rinci dan didapatkan potensi cadangan.
“Pada dasarnya energi panas bumi yang dimiliki oleh Negara harus dapat dimanfaatkan sebesar-besarnya untuk kemakmuran masyarakat sebagaimana diamanatkan oleh Undang-Undang Dasar kita.“

Berikut ini beberapa lapangan panas bumi yang memiliki prospek untuk dikembangkan menjadi PLTP.
  • Lapangan Panasbumi Margabayur di Lampung dengan potensi lapangannya sekitar 250 MW dan layak untuk dikembangkan pada tahap awal dengan kapasitas 2x55 MW. Pada lapangan panasbumi ini perlu melaksanakan pemboran sumur-sumur untuk memperoleh uap.
  • Lapangan Panasbumi Lahendong yang memiliki potensi lapangan uapnya sebesar 250 MW dan layak untuk dikembangkan 2x20 MW.
  • Lapangan Panasbumi Ulubelu-Lampung yang mempunyai potensi lapangannya sekitar 550 MW. Pada lapangan ini potensi panasbumi yang sudah dikembnagkan swasta sekitar 110 - 300 MW dan sisanya masih ada sekitar 200 - 250 MW belum dikembangkan.
  • Lapangan Panasbumi Lainnya adalah Kerinci. Lapangan-lapangan tersebut sekarang ini sedang diekplorasi oleh Pertamina.
Di Jawa Timur terdapat 11 lokasi panas bumi yang dapat menghasilkan total energi 1206,5 MW atau hampir 5% dari total potensi di Indonesia. Kesebelas lokasi tersebut tersebar di Tirtosari, Pandan, Cangar-Tulungrejo, Songgoriti, Arjuno-Welirang, Telaga Ngebel, Argopuro, Tiris-Lamongan, Blawan Ijen, Rejosari dan Melati. Perkiraan potensi yang dapat dikembangkan antara lain terdapat di Iyang-Argopuro 285 MW, Ngebel-Wilis 120 MW, Ijen 270 MW, Arjuno-Welirang 230 MW dan Tiris-Lamongan 140 MW. Dari potensi yang ada di Jawa Timur belum ada satupun yang dikembangkan untuk pembangkit tenaga listrik. Dengan eksplorasi yang lebih detail pada daerah yang lebih luas, sangat mungkin potensi tersebut lebih besar dari pada yang diperkirakan sekarang.



Tabel 1
Daerah-Daerah Prospek Berpotensi Panas Bumi
Dengan Kapasitas Total Energi 1.205 MW Yang Telah Ada Pengembangnya*)
L o k a s i
Kapasitas (MW)

Sumatera Utara
Sarulla
6 x 55
Sibayak
3 x 40
Sumatera Selatan
Lumut Bai
3 x 70


Jawa Barat
•Patuha
•Kamojang
•Gunung Salak 7
•Wayang Windu 2
•Cibuni
2 x 55
2 x 30
3 x 55
2 x 110
1 x 10
Jawa Tengah
Dieng 2
2 x 60
Kapasitas Total
1.205

Tabel 2
Daerah-Daerah Prospek Berpotensi Sumber Panas Bumi Dengan Kapasitas Total 1.590 MW Yang Belum Ada Pengembangnya*)
L o k a s i
Kapasitas (MW)
Nangroe Aceh Darussalam
Pulau Weh
2 x 40
Begkulu
•Ululais
•Rantau Dedap
3 x 55
3 x 70
Lampung
•Ulubelu
•Lumut Balai
3 x 55
6 x 55
Jawa barat
Karaha bodas
2 x 110
Jawa timur
Argopuro
3 x 70
Gorontalo
Kotamobagu
2 x 40
Sulawesi Utara
•Lahendong 2
•Tompaso
2 x 20
2 x 40
Maluku
Ambon
2 x 25
Kapasitas Total
1.590

 
Air atau uap panas –fluida– (yang berada di perut gunung api) ternyata tidak diam ditempatnya, justru karena menerima panas dari magma, terjadilah fenomena arus konveksi. Pada awalnya, molekul-molekul fluida tersebut berusaha mentransfer atau berbagi panas kepada sesamanya hingga mencapai kesetaraan temperatur. Seiring dengan meningkatnya temperatur, volumenya bertambah dan efeknya tekanan fluida semakin naik. Akhirnya fluida mendesak dan mendorong batuan sekitarnya atau berusaha menerobos celah-celah antar batuan (fracture) untuk melepaskan tekanannya. Secara umum, tekanan di sekitar permukaan bumi lebih rendah dari pada tekanan dibawah permukaan bumi. Berdasarkan hal ini, air panas maupun uap panas yang terperangkap dibawah permukaan bumi akan berupaya mencari jalan terobosan supaya bisa keluar ke permukaan bumi. Silakan perhatikan foto di atas. Ketika mereka menemukan jalan untuk sampai ke permukaan, kita bisa melihatnya sebagai asap putih yang sesungguhnya adalah uap panas (fumarole), atau bisa juga mereka keluar dalam wujud cairan membentuk telaga air panas  (hot spring), atau bisa juga berupa lumpur panas (mud pots). Semua fenomena ini adalah jenis-jenis manifestasi dari keberadaan sistem panas bumi (geothermal system). Itu merupakan tanda-tanda alam yang menunjukkan bahwa di bawah lokasi manifestasi tersebut pasti ada intrusi magma yang memanaskan batuan sekelilingnya. Berarti daerah tersebut menyimpan potensi panas bumi





http://saptandika.wordpress.com/2011/08/11/geothermal-masa-depan-energi-indonesia/ suatu saat bisa dimanfaatkan sebagai sumber energy